mirror of
https://github.com/WhatCD/Gazelle.git
synced 2024-12-13 10:56:26 +00:00
93 lines
3.4 KiB
PHP
93 lines
3.4 KiB
PHP
|
<?php
|
||
|
function inverse_ncdf($p) {
|
||
|
/***************************************************************************
|
||
|
* inverse_ncdf.php
|
||
|
* -------------------
|
||
|
* begin : Friday, January 16, 2004
|
||
|
* copyright : (C) 2004 Michael Nickerson
|
||
|
* email : nickersonm@yahoo.com
|
||
|
*
|
||
|
***************************************************************************/
|
||
|
|
||
|
//Inverse ncdf approximation by Peter John Acklam, implementation adapted to
|
||
|
//PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
|
||
|
//a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
|
||
|
//I have not checked the accuracy of this implementation. Be aware that PHP
|
||
|
//will truncate the coeficcients to 14 digits.
|
||
|
|
||
|
//You have permission to use and distribute this function freely for
|
||
|
//whatever purpose you want, but please show common courtesy and give credit
|
||
|
//where credit is due.
|
||
|
|
||
|
//Input paramater is $p - probability - where 0 < p < 1.
|
||
|
|
||
|
//Coefficients in rational approximations
|
||
|
$a = array(1 => -3.969683028665376e+01, 2 => 2.209460984245205e+02,
|
||
|
3 => -2.759285104469687e+02, 4 => 1.383577518672690e+02,
|
||
|
5 => -3.066479806614716e+01, 6 => 2.506628277459239e+00);
|
||
|
|
||
|
$b = array(1 => -5.447609879822406e+01, 2 => 1.615858368580409e+02,
|
||
|
3 => -1.556989798598866e+02, 4 => 6.680131188771972e+01,
|
||
|
5 => -1.328068155288572e+01);
|
||
|
|
||
|
$c = array(1 => -7.784894002430293e-03, 2 => -3.223964580411365e-01,
|
||
|
3 => -2.400758277161838e+00, 4 => -2.549732539343734e+00,
|
||
|
5 => 4.374664141464968e+00, 6 => 2.938163982698783e+00);
|
||
|
|
||
|
$d = array(1 => 7.784695709041462e-03, 2 => 3.224671290700398e-01,
|
||
|
3 => 2.445134137142996e+00, 4 => 3.754408661907416e+00);
|
||
|
|
||
|
//Define break-points.
|
||
|
$p_low = 0.02425; //Use lower region approx. below this
|
||
|
$p_high = 1 - $p_low; //Use upper region approx. above this
|
||
|
|
||
|
//Define/list variables (doesn't really need a definition)
|
||
|
//$p (probability), $sigma (std. deviation), and $mu (mean) are user inputs
|
||
|
$q = NULL; $x = NULL; $y = NULL; $r = NULL;
|
||
|
|
||
|
//Rational approximation for lower region.
|
||
|
if (0 < $p && $p < $p_low) {
|
||
|
$q = sqrt(-2 * log($p));
|
||
|
$x = ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) *
|
||
|
$q + $c[6]) / (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) *
|
||
|
$q + 1);
|
||
|
}
|
||
|
|
||
|
//Rational approximation for central region.
|
||
|
elseif ($p_low <= $p && $p <= $p_high) {
|
||
|
$q = $p - 0.5;
|
||
|
$r = $q * $q;
|
||
|
$x = ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) *
|
||
|
$r + $a[6]) * $q / ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r +
|
||
|
$b[4]) * $r + $b[5]) * $r + 1);
|
||
|
}
|
||
|
|
||
|
//Rational approximation for upper region.
|
||
|
elseif ($p_high < $p && $p < 1) {
|
||
|
$q = sqrt(-2 * log(1 - $p));
|
||
|
$x = -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q +
|
||
|
$c[5]) * $q + $c[6]) / (((($d[1] * $q + $d[2]) * $q + $d[3]) *
|
||
|
$q + $d[4]) * $q + 1);
|
||
|
}
|
||
|
|
||
|
//If 0 < p < 1, return a null value
|
||
|
else {
|
||
|
$x = NULL;
|
||
|
}
|
||
|
|
||
|
return $x;
|
||
|
//END inverse ncdf implementation.
|
||
|
}
|
||
|
|
||
|
// Confidence level for binomial scoring. Just compute this once.
|
||
|
define(Z_VAL, inverse_ncdf(1-(1-.95)/2));
|
||
|
|
||
|
// Implementation of the algorithm described at http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
|
||
|
function binomial_score($Ups, $Total) {
|
||
|
if (($Total <= 0) || ($Ups < 0)) {
|
||
|
return 0;
|
||
|
}
|
||
|
$phat = $Ups/$Total;
|
||
|
return ($phat + Z_VAL*Z_VAL/(2*$Total) - Z_VAL*sqrt(($phat*(1-$phat)+Z_VAL*Z_VAL/(4*$Total))/$Total))/(1+Z_VAL*Z_VAL/$Total);
|
||
|
}
|
||
|
?>
|