MarginaliaSearch/code/libraries/coded-sequence/java/nu/marginalia/sequence/SequenceOperations.java

199 lines
5.8 KiB
Java

package nu.marginalia.sequence;
import it.unimi.dsi.fastutil.ints.IntArrayList;
import it.unimi.dsi.fastutil.ints.IntIterator;
import it.unimi.dsi.fastutil.ints.IntList;
import java.util.List;
public class SequenceOperations {
/** Return true if the sequences intersect, false otherwise.
* */
public static boolean intersectSequences(IntIterator... sequences) {
if (sequences.length <= 1)
return true;
// Initialize values and find the maximum value
int[] values = new int[sequences.length];
for (int i = 0; i < sequences.length; i++) {
if (sequences[i].hasNext())
values[i] = sequences[i].nextInt();
else
return false;
}
// Intersect the sequences by advancing all values smaller than the maximum seen so far
// until they are equal to the maximum value, or until the end of the sequence is reached
int max = Integer.MIN_VALUE;
int successes = 0;
for (int i = 0; successes < sequences.length; i = (i + 1) % sequences.length)
{
if (values[i] == max) {
successes++;
} else {
successes = 1;
// Discard values until we reach the maximum value seen so far,
// or until the end of the sequence is reached
while (values[i] < max) {
if (sequences[i].hasNext())
values[i] = sequences[i].nextInt();
else
return false;
}
// Update the maximum value, if necessary
max = Math.max(max, values[i]);
}
}
return true;
}
public static IntList findIntersections(IntIterator... sequences) {
if (sequences.length < 1)
return IntList.of();
// Initialize values and find the maximum value
int[] values = new int[sequences.length];
for (int i = 0; i < sequences.length; i++) {
if (sequences[i].hasNext())
values[i] = sequences[i].nextInt();
else
return IntList.of();
}
// Intersect the sequences by advancing all values smaller than the maximum seen so far
// until they are equal to the maximum value, or until the end of the sequence is reached
int max = Integer.MIN_VALUE;
int successes = 0;
IntList ret = new IntArrayList();
outer:
for (int i = 0;; i = (i + 1) % sequences.length)
{
if (successes == sequences.length) {
ret.add(max);
successes = 1;
if (sequences[i].hasNext()) {
max = sequences[i].nextInt();
} else {
break;
}
} else if (values[i] == max) {
successes++;
} else {
successes = 1;
// Discard values until we reach the maximum value seen so far,
// or until the end of the sequence is reached
while (values[i] < max) {
if (sequences[i].hasNext()) {
values[i] = sequences[i].nextInt();
} else {
break outer;
}
}
// Update the maximum value, if necessary
max = Math.max(max, values[i]);
}
}
return ret;
}
/** Return the minimum word distance between two sequences, or a negative value if either sequence is empty.
* */
public static int minDistance(IntIterator seqA, IntIterator seqB)
{
int minDistance = Integer.MAX_VALUE;
if (!seqA.hasNext() || !seqB.hasNext())
return -1;
int a = seqA.nextInt();
int b = seqB.nextInt();
while (true) {
int distance = Math.abs(a - b);
if (distance < minDistance)
minDistance = distance;
if (a <= b) {
if (seqA.hasNext()) {
a = seqA.nextInt();
} else {
break;
}
} else {
if (seqB.hasNext()) {
b = seqB.nextInt();
} else {
break;
}
}
}
return minDistance;
}
public static int minDistance(List<IntIterator> iterators) {
if (iterators.size() <= 1)
return 0;
int[] values = new int[iterators.size()];
for (int i = 0; i < iterators.size(); i++) {
if (iterators.get(i).hasNext())
values[i] = iterators.get(i).nextInt();
else
return 0;
}
int minDist = Integer.MAX_VALUE;
int successes = 0;
int minVal = Integer.MAX_VALUE;
int maxVal = Integer.MIN_VALUE;
for (int val : values) {
minVal = Math.min(minVal, val);
maxVal = Math.max(maxVal, val);
}
minDist = Math.min(minDist, maxVal - minVal);
for (int i = 0; successes < iterators.size(); i = (i + 1) % iterators.size())
{
if (values[i] == minVal) {
if (!iterators.get(i).hasNext()) {
break;
}
values[i] = iterators.get(i).nextInt();
if (values[i] > maxVal) {
maxVal = values[i];
}
if (values[i] > minVal) {
minVal = Integer.MAX_VALUE;
for (int val : values) {
minVal = Math.min(minVal, val);
}
}
minDist = Math.min(minDist, maxVal - minVal);
}
}
return minDist;
}
}