nips/44.md

163 lines
5.0 KiB
Markdown
Raw Normal View History

2023-08-11 15:34:18 +00:00
NIP-44
======
2023-08-11 16:23:56 +00:00
Encrypted Payloads (Versioned)
------------------------------
2023-08-11 15:34:18 +00:00
`optional` `author:paulmillr` `author:staab`
2023-08-12 21:05:41 +00:00
The NIP introduces a new data format for keypair-based encryption. This NIP is versioned to allow multiple algorithm choices to exist simultaneously.
2023-08-11 15:34:18 +00:00
An encrypted payload MUST be encoded as a JSON object. Different versions may have different parameters. Every format has a `v` field specifying its version.
Currently defined encryption algorithms:
- `0x00` - Reserved
- `0x01` - XChaCha with same key `sha256(ecdh)` per conversation
# Version 1
Params:
1. `nonce`: base64-encoded xchacha nonce
2. `ciphertext`: base64-encoded xchacha ciphertext, created from (key, nonce) against `plaintext`.
Example:
- Alice's private key: `5c0c523f52a5b6fad39ed2403092df8cebc36318b39383bca6c00808626fab3a`
- Bob's private key: `4b22aa260e4acb7021e32f38a6cdf4b673c6a277755bfce287e370c924dc936d`
Encrypting the message `hello` from Alice to Bob results in the base-64 encoded tlv payload:
2023-08-11 15:34:18 +00:00
```
AZKyMIHbfVYFlAAK7Ci5wuM5GFOLaeI7LQKDzWJY
2023-08-11 15:34:18 +00:00
```
2023-08-11 20:09:17 +00:00
# Other Notes
By default in the [libsecp256k1](https://github.com/bitcoin-core/secp256k1) ECDH implementation, the secret is the SHA256 hash of the shared point (both X and Y coordinates). We are using this exact implementation. In NIP-94, unhashed shared point was used.
2023-08-11 15:34:18 +00:00
2023-08-12 21:05:41 +00:00
This encryption scheme replaces the one described in NIP-04, which is not secure. It used bad cryptographic building blocks and must not be used.
2023-08-11 20:09:17 +00:00
# Code Samples
2023-08-11 15:34:18 +00:00
2023-08-11 20:09:17 +00:00
## Javascript
2023-08-11 15:34:18 +00:00
```javascript
import {xchacha20} from "@noble/ciphers/chacha"
import {secp256k1} from "@noble/curves/secp256k1"
import {sha256} from "@noble/hashes/sha256"
import {randomBytes} from "@noble/hashes/utils"
2023-08-11 15:34:18 +00:00
import {base64} from "@scure/base"
export const utf8Decoder = new TextDecoder()
export const utf8Encoder = new TextEncoder()
export const getSharedSecret = (privkey: string, pubkey: string): Uint8Array =>
sha256(secp256k1.getSharedSecret(privkey, "02" + pubkey).subarray(1, 33))
export function encrypt(privkey: string, pubkey: string, text: string, v = 1) {
if (v !== 1) {
throw new Error('NIP44: unknown encryption version')
2023-08-11 15:34:18 +00:00
}
const key = getSharedSecret(privkey, pubkey)
const nonce = randomBytes(24)
const plaintext = utf8Encoder.encode(text)
const ciphertext = xchacha20(key, nonce, plaintext)
const payload = new Uint8Array(1 + 24 + ciphertext.length)
payload.set([version], 0)
payload.set(nonce, 1)
payload.set(ciphertext, 1 + 24)
return base64.encode(payload)
2023-08-11 15:34:18 +00:00
}
export function decrypt(privkey: string, pubkey: string, payload: string) {
const payload = base64.decode(blob)
if (payload[0] !== 1) {
throw new Error('NIP44: unknown encryption version')
2023-08-11 15:34:18 +00:00
}
const nonce = payload.subarray(1, 25)
const ciphertext = payload.subarray(25)
2023-08-11 15:34:18 +00:00
const key = getSharedSecret(privkey, pubkey)
const plaintext = xchacha20(key, nonce, ciphertext)
return utf8Decoder.decode(plaintext)
}
```
2023-08-11 20:09:17 +00:00
## Kotlin
2023-08-11 15:34:18 +00:00
```kotlin
// implementation 'fr.acinq.secp256k1:secp256k1-kmp-jni-android:0.10.1'
// implementation "com.goterl:lazysodium-android:5.1.0@aar"
// implementation "net.java.dev.jna:jna:5.12.1@aar"
fun getSharedSecretNIP44(privKey: ByteArray, pubKey: ByteArray): ByteArray =
MessageDigest.getInstance("SHA-256").digest(
Secp256k1.get().pubKeyTweakMul(
Hex.decode("02") + pubKey,
privKey
).copyOfRange(1, 33)
)
fun encryptNIP44(msg: String, privKey: ByteArray, pubKey: ByteArray): EncryptedInfo {
val nonce = ByteArray(24).apply {
SecureRandom.getInstanceStrong().nextBytes(this)
}
val cipher = streamXChaCha20Xor(
message = msg.toByteArray(),
nonce = nonce,
key = getSharedSecretNIP44(privKey, pubKey)
)
return EncryptedInfo(
ciphertext = Base64.getEncoder().encodeToString(cipher),
nonce = Base64.getEncoder().encodeToString(nonce),
v = Nip24Version.XChaCha20.code
)
}
fun decryptNIP44(encInfo: EncryptedInfo, privKey: ByteArray, pubKey: ByteArray): String? {
require(encInfo.v == Nip24Version.XChaCha20.code) { "NIP44: unknown encryption version" }
return streamXChaCha20Xor(
message = Base64.getDecoder().decode(encInfo.ciphertext),
nonce = Base64.getDecoder().decode(encInfo.nonce),
key = getSharedSecretNIP44(privKey, pubKey)
)?.decodeToString()
}
// This method is not exposed in AndroidSodium yet, but it will be in the next version.
fun streamXChaCha20Xor(message: ByteArray, nonce: ByteArray, key: ByteArray): ByteArray? {
return with (SodiumAndroid()) {
val resultCipher = ByteArray(message.size)
val isSuccessful = crypto_stream_chacha20_xor_ic(
resultCipher,
message,
message.size.toLong(),
nonce.drop(16).toByteArray(), // chacha nonce is just the last 8 bytes.
0,
ByteArray(32).apply {
crypto_core_hchacha20(this, nonce, key, null)
}
) == 0
if (isSuccessful) resultCipher else null
}
}
data class EncryptedInfo(val ciphertext: String, val nonce: String, val v: Int)
enum class Nip24Version(val code: Int) {
Reserved(0),
XChaCha20(1)
}