mirror of
https://github.com/RoboSats/robosats.git
synced 2025-01-18 20:21:35 +00:00
replaced weighted mean to weighted median
This commit changes the weighted mean to the weighted median for the calculation of the premium displayed on the robosats.
This commit is contained in:
parent
27d28f4e0e
commit
f2f90bd948
45
api/utils.py
45
api/utils.py
@ -143,15 +143,56 @@ def compute_premium_percentile(order):
|
|||||||
return round(np.sum(rates < order_rate) / len(rates), 2)
|
return round(np.sum(rates < order_rate) / len(rates), 2)
|
||||||
|
|
||||||
|
|
||||||
|
def weighted_median(values, sample_weight=None, quantiles= 0.5, values_sorted=False):
|
||||||
|
"""Very close to numpy.percentile, but it supports weights.
|
||||||
|
NOTE: quantiles should be in [0, 1]!
|
||||||
|
:param values: numpy.array with data
|
||||||
|
:param quantiles: array-like with many quantiles needed. For weighted median 0.5
|
||||||
|
:param sample_weight: array-like of the same length as `array`
|
||||||
|
:param values_sorted: bool, if True, then will avoid sorting of
|
||||||
|
initial array assuming array is already sorted
|
||||||
|
:return: numpy.array with computed quantiles.
|
||||||
|
"""
|
||||||
|
values = np.array(values)
|
||||||
|
quantiles = np.array(quantiles)
|
||||||
|
if sample_weight is None:
|
||||||
|
sample_weight = np.ones(len(values))
|
||||||
|
sample_weight = np.array(sample_weight)
|
||||||
|
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
|
||||||
|
'quantiles should be in [0, 1]'
|
||||||
|
|
||||||
|
if not values_sorted:
|
||||||
|
sorter = np.argsort(values)
|
||||||
|
values = values[sorter]
|
||||||
|
sample_weight = sample_weight[sorter]
|
||||||
|
|
||||||
|
weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
|
||||||
|
weighted_quantiles -= weighted_quantiles[0]
|
||||||
|
weighted_quantiles /= weighted_quantiles[-1]
|
||||||
|
|
||||||
|
return np.interp(quantiles, weighted_quantiles, values)
|
||||||
|
|
||||||
def compute_avg_premium(queryset):
|
def compute_avg_premium(queryset):
|
||||||
weighted_premiums = []
|
premiums = []
|
||||||
volumes = []
|
volumes = []
|
||||||
|
|
||||||
# We exclude BTC, as LN <-> BTC swap premiums should not be mixed with FIAT.
|
# We exclude BTC, as LN <-> BTC swap premiums should not be mixed with FIAT.
|
||||||
|
|
||||||
for tick in queryset.exclude(currency=1000):
|
for tick in queryset.exclude(currency=1000):
|
||||||
weighted_premiums.append(tick.premium * tick.volume)
|
premiums.append(tick.premium)
|
||||||
volumes.append(tick.volume)
|
volumes.append(tick.volume)
|
||||||
|
|
||||||
|
total_volume = sum(volumes)
|
||||||
|
|
||||||
|
# weighted_median_premium is the weighted median of the premiums by volume
|
||||||
|
|
||||||
|
weighted_median_premium = weighted_median(values=premiums,
|
||||||
|
sample_weight=volumes,
|
||||||
|
quantiles=0.5,
|
||||||
|
values_sorted=False)
|
||||||
|
|
||||||
|
return weighted_median_premium, total_volume
|
||||||
|
|
||||||
total_volume = sum(volumes)
|
total_volume = sum(volumes)
|
||||||
# Avg_premium is the weighted average of the premiums by volume
|
# Avg_premium is the weighted average of the premiums by volume
|
||||||
avg_premium = sum(weighted_premiums) / total_volume
|
avg_premium = sum(weighted_premiums) / total_volume
|
||||||
|
Loading…
Reference in New Issue
Block a user