robosats/api/utils.py
2022-01-19 12:55:24 -08:00

92 lines
2.7 KiB
Python

import requests, ring, os
from decouple import config
import numpy as np
from api.models import Order
market_cache = {}
@ring.dict(market_cache, expire=3) #keeps in cache for 3 seconds
def get_exchange_rates(currencies):
'''
Params: list of currency codes.
Checks for exchange rates in several public APIs.
Returns the median price list.
'''
APIS = config('MARKET_PRICE_APIS', cast=lambda v: [s.strip() for s in v.split(',')])
api_rates = []
for api_url in APIS:
try: # If one API is unavailable pass
if 'blockchain.info' in api_url:
blockchain_prices = requests.get(api_url).json()
blockchain_rates = []
for currency in currencies:
try: # If a currency is missing place a None
blockchain_rates.append(float(blockchain_prices[currency]['last']))
except:
blockchain_rates.append(np.nan)
api_rates.append(blockchain_rates)
elif 'yadio.io' in api_url:
yadio_prices = requests.get(api_url).json()
yadio_rates = []
for currency in currencies:
try:
yadio_rates.append(float(yadio_prices['BTC'][currency]))
except:
yadio_rates.append(np.nan)
api_rates.append(yadio_rates)
except:
pass
if len(api_rates) == 0:
return None # Wops there is not API available!
exchange_rates = np.array(api_rates)
median_rates = np.nanmedian(exchange_rates, axis=0)
return median_rates.tolist()
lnd_v_cache = {}
@ring.dict(lnd_v_cache, expire=3600) #keeps in cache for 3600 seconds
def get_lnd_version():
stream = os.popen('lnd --version')
lnd_version = stream.read()[:-1]
return lnd_version
robosats_commit_cache = {}
@ring.dict(robosats_commit_cache, expire=3600)
def get_commit_robosats():
stream = os.popen('git log -n 1 --pretty=format:"%H"')
lnd_version = stream.read()
return lnd_version
premium_percentile = {}
@ring.dict(premium_percentile, expire=300)
def compute_premium_percentile(order):
queryset = Order.objects.filter(currency=order.currency, status=Order.Status.PUB).exclude(id=order.id)
print(len(queryset))
if len(queryset) <= 1:
return 0.5
order_rate = float(order.last_satoshis) / float(order.amount)
rates = []
for similar_order in queryset:
rates.append(float(similar_order.last_satoshis) / float(similar_order.amount))
rates = np.array(rates)
print(rates)
print(order_rate)
print(np.sum(rates < order_rate))
return round(np.sum(rates < order_rate) / len(rates),2)