19 KiB
BitTorrent Gateway - Technical Overview
This document provides a comprehensive technical overview of the BitTorrent Gateway architecture, implementation details, and system design decisions.
System Architecture
High-Level Architecture
The BitTorrent Gateway is built as a unified system with multiple specialized components working together to provide intelligent content distribution:
┌─────────────────────────────────────────────────────────────┐
│ BitTorrent Gateway │
├─────────────────────┬─────────────────────┬─────────────────┤
│ Gateway Server │ Blossom Server │ DHT Node │
│ (Port 9877) │ (Port 8082) │ (Port 6883) │
│ │ │ │
│ • HTTP API │ • Blob Storage │ • Peer Discovery│
│ • WebSeed │ • Nostr Protocol │ • DHT Protocol │
│ • Rate Limiting │ • Content Address │ • Bootstrap │
│ • Abuse Prevention │ • LRU Caching │ • Announce │
│ • Video Transcoding │ │ │
└─────────────────────┴─────────────────────┴─────────────────┘
│
┌────────────┴────────────┐
│ Built-in Tracker │
│ │
│ • Announce/Scrape │
│ • Peer Management │
│ • Client Compatibility │
│ • Statistics Tracking │
└─────────────────────────┘
│
┌────────────┴────────────┐
│ P2P Coordinator │
│ │
│ • Unified Peer Discovery│
│ • Smart Peer Ranking │
│ • Load Balancing │
│ • Health Monitoring │
└─────────────────────────┘
Core Components
1. Gateway HTTP Server (internal/api/)
Purpose: Main API server and WebSeed implementation Port: 9877 Key Features:
- RESTful API for file operations
- WebSeed (BEP-19) implementation for BitTorrent clients
- Smart proxy for reassembling chunked content
- Advanced LRU caching system
- Rate limiting and abuse prevention
- Integrated video transcoding engine
Implementation Details:
- Built with Gorilla Mux router
- Comprehensive middleware stack (security, rate limiting, CORS)
- WebSeed with concurrent piece loading and caching
- Client-specific optimizations (qBittorrent, Transmission, etc.)
2. Blossom Server (internal/blossom/)
Purpose: Content-addressed blob storage Port: 8082 Key Features:
- Nostr-compatible blob storage protocol
- SHA-256 content addressing
- Direct storage for files <100MB
- Rate limiting and authentication
Implementation Details:
- Implements Blossom protocol specification
- Integration with gateway storage backend
- Efficient blob retrieval and caching
- Nostr event signing and verification
3. DHT Node (internal/dht/)
Purpose: Distributed peer discovery Port: 6883 (UDP) Key Features:
- Full Kademlia DHT implementation
- Bootstrap connectivity to major DHT networks
- Automatic torrent announcement
- Peer discovery and sharing
Implementation Details:
- Custom DHT implementation with routing table management
- Integration with BitTorrent mainline DHT
- Bootstrap nodes include major public trackers
- Periodic maintenance and peer cleanup
4. Built-in BitTorrent Tracker (internal/tracker/)
Purpose: BitTorrent announce/scrape server Key Features:
- Full BitTorrent tracker protocol
- Peer management and statistics
- Client compatibility optimizations
- Abuse detection and prevention
Implementation Details:
- Standards-compliant announce/scrape handling
- Support for both compact and dictionary peer formats
- Client detection and protocol adjustments
- Geographic proximity-based peer selection
5. P2P Coordinator (internal/p2p/)
Purpose: Unified management of all P2P components Key Features:
- Aggregates peers from tracker, DHT, and WebSeed
- Smart peer ranking algorithm
- Load balancing across peer sources
- Health monitoring and alerting
Implementation Details:
- Sophisticated peer scoring system
- Geographic proximity calculation
- Performance-based peer ranking
- Automatic failover and redundancy
6. Video Transcoding Engine (internal/transcoding/)
Purpose: Automatic video conversion for web compatibility Key Features:
- H.264/AAC MP4 conversion using FFmpeg
- Background processing with priority queuing
- Smart serving (transcoded when ready, original as fallback)
- Progress tracking and status API endpoints
- Configurable quality profiles and resource limits
Implementation Details:
- Queue-based job processing with worker pools
- Database tracking of transcoding status and progress
- File reconstruction for chunked torrents
- Intelligent priority system based on file size
- Error handling and retry mechanisms
Storage Architecture
Intelligent Storage Strategy
The system uses a dual-strategy approach based on file size:
File Upload → Size Analysis → Storage Decision → Video Processing
│ │
┌───────┴───────┐ │
│ │ │
< 100MB ≥ 100MB │
│ │ │
┌───────▼───────┐ ┌────▼────┐ │
│ Blob Storage │ │ Chunked │ │
│ │ │ Storage │ │
│ • Direct blob │ │ │ │
│ • Immediate │ │ • 2MB │ │
│ access │ │ chunks│ │
│ • No P2P │ │ • Torrent│ │
│ overhead │ │ + DHT │ │
└───────────────┘ └─────────┘ │
│ │
┌──────┴─────────────────────▼──┐
│ Video Analysis │
│ │
│ • Format Detection │
│ • Transcoding Queue │
│ • Priority Assignment │
│ • Background Processing │
└───────────────────────────────┘
Storage Backends
Metadata Database (SQLite)
-- File metadata
CREATE TABLE files (
hash TEXT PRIMARY KEY,
filename TEXT,
size INTEGER,
storage_type TEXT, -- 'blob' or 'chunked'
created_at DATETIME,
user_id TEXT
);
-- Torrent information
CREATE TABLE torrents (
info_hash TEXT PRIMARY KEY,
file_hash TEXT,
piece_length INTEGER,
pieces_count INTEGER,
magnet_link TEXT,
FOREIGN KEY(file_hash) REFERENCES files(hash)
);
-- Chunk mapping for large files
CREATE TABLE chunks (
file_hash TEXT,
chunk_index INTEGER,
chunk_hash TEXT,
chunk_size INTEGER,
PRIMARY KEY(file_hash, chunk_index)
);
-- Transcoding job tracking
CREATE TABLE transcoding_status (
file_hash TEXT PRIMARY KEY,
status TEXT NOT NULL,
error_message TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
updated_at DATETIME DEFAULT CURRENT_TIMESTAMP
);
Blob Storage
- Direct file storage in
./data/blobs/
- SHA-256 content addressing
- Efficient for small files and frequently accessed content
- No P2P overhead - immediate availability
Chunk Storage
- Large files split into 2MB pieces in
./data/chunks/
- BitTorrent-compatible piece structure
- Enables parallel downloads and partial file access
- Each chunk independently content-addressed
Transcoded Storage
- Processed video files stored in
./data/transcoded/
- Organized by original file hash subdirectories
- H.264/AAC MP4 format for universal web compatibility
- Smart serving prioritizes transcoded versions when available
Caching System
LRU Piece Cache
type PieceCache struct {
cache map[string]*CacheEntry
lru *list.List
mutex sync.RWMutex
maxSize int64
currentSize int64
}
type CacheEntry struct {
Key string
Data []byte
Size int64
AccessTime time.Time
Element *list.Element
}
Features:
- Configurable cache size limits
- Least Recently Used eviction
- Concurrent access with read-write locks
- Cache hit ratio tracking and optimization
Video Transcoding System
Architecture Overview
The transcoding system provides automatic video conversion for web compatibility:
type TranscodingEngine struct {
// Core Components
Transcoder *Transcoder // FFmpeg integration
Manager *Manager // Job coordination
WorkerPool chan Job // Background processing
Database *sql.DB // Status tracking
// Configuration
ConcurrentJobs int // Parallel workers
WorkDirectory string // Processing workspace
QualityProfiles []Quality // Output formats
}
Processing Pipeline
- Upload Detection: Video files automatically identified during upload
- Queue Decision: Files ≥50MB queued for transcoding with priority based on size
- File Reconstruction: Chunked torrents reassembled into temporary files
- FFmpeg Processing: H.264/AAC conversion with web optimization flags
- Smart Serving: Transcoded versions served when ready, originals as fallback
Transcoding Manager
func (tm *Manager) QueueVideoForTranscoding(fileHash, fileName, filePath string, fileSize int64) {
// Check if already processed
if tm.HasTranscodedVersion(fileHash) {
return
}
// Analyze file format
needsTranscoding, err := tm.transcoder.NeedsTranscoding(filePath)
if !needsTranscoding {
tm.markAsWebCompatible(fileHash)
return
}
// Create prioritized job
job := Job{
ID: fmt.Sprintf("transcode_%s", fileHash),
InputPath: filePath,
OutputDir: filepath.Join(tm.transcoder.workDir, fileHash),
Priority: tm.calculatePriority(fileSize),
Callback: tm.jobCompletionHandler,
}
tm.transcoder.SubmitJob(job)
tm.markTranscodingQueued(fileHash)
}
Smart Priority System
- High Priority (8): Files < 500MB for faster user feedback
- Medium Priority (5): Standard processing queue
- Low Priority (2): Files > 5GB to prevent resource monopolization
Status API Integration
Users can track transcoding progress via authenticated endpoints:
/api/users/me/files/{hash}/transcoding-status
- Real-time status and progress- Response includes job status, progress percentage, and transcoded file availability
P2P Integration & Coordination
Unified Peer Discovery
The P2P coordinator aggregates peers from multiple sources:
- BitTorrent Tracker: Authoritative peer list from announces
- DHT Network: Distributed peer discovery across the network
- WebSeed: Gateway itself as a reliable seed source
Smart Peer Ranking Algorithm
func (pr *PeerRanker) RankPeers(peers []PeerInfo, clientLocation *Location) []RankedPeer {
var ranked []RankedPeer
for _, peer := range peers {
score := pr.calculatePeerScore(peer, clientLocation)
ranked = append(ranked, RankedPeer{
Peer: peer,
Score: score,
Reason: pr.getScoreReason(peer, clientLocation),
})
}
// Sort by score (highest first)
sort.Slice(ranked, func(i, j int) bool {
return ranked[i].Score > ranked[j].Score
})
return ranked
}
Scoring Factors:
- Geographic Proximity (30%): Distance-based scoring
- Source Reliability (25%): Tracker > DHT > WebSeed fallback
- Historical Performance (20%): Past connection success rates
- Load Balancing (15%): Distribute load across available peers
- Freshness (10%): Recently seen peers preferred
Health Monitoring System
Component Health Scoring
type HealthStatus struct {
IsHealthy bool `json:"is_healthy"`
Score int `json:"score"` // 0-100
Issues []string `json:"issues"`
LastChecked time.Time `json:"last_checked"`
ResponseTime int64 `json:"response_time"` // milliseconds
Details map[string]interface{} `json:"details"`
}
Weighted Health Calculation:
- WebSeed: 40% (most critical for availability)
- Tracker: 35% (important for peer discovery)
- DHT: 25% (supplemental peer source)
Automatic Alerting
- Health scores below configurable threshold trigger alerts
- Multiple alert mechanisms (logs, callbacks, future integrations)
- Component-specific and overall system health monitoring
WebSeed Implementation (BEP-19)
Standards Compliance
The WebSeed implementation follows BEP-19 specification:
- URL-based seeding: BitTorrent clients can fetch pieces via HTTP
- Range request support: Efficient partial file downloads
- Piece boundary alignment: Proper handling of piece boundaries
- Error handling: Appropriate HTTP status codes for BitTorrent clients
Advanced Features
Concurrent Request Optimization
type ConcurrentRequestTracker struct {
activeRequests map[string]*RequestInfo
mutex sync.RWMutex
maxConcurrent int
}
- Prevents duplicate piece loads
- Manages concurrent request limits
- Request deduplication and waiting
Client-Specific Optimizations
func (h *Handler) detectClient(userAgent string) ClientType {
switch {
case strings.Contains(userAgent, "qbittorrent"):
return ClientQBittorrent
case strings.Contains(userAgent, "transmission"):
return ClientTransmission
case strings.Contains(userAgent, "webtorrent"):
return ClientWebTorrent
// ... additional client detection
}
}
Per-Client Optimizations:
- qBittorrent: Standard intervals, no special handling needed
- Transmission: Prefers shorter announce intervals (≤30 min)
- WebTorrent: Short intervals for web compatibility (≤5 min)
- uTorrent: Minimum interval enforcement to prevent spam
Nostr Integration
Content Announcements
When files are uploaded, they're announced to configured Nostr relays:
func (g *Gateway) announceToNostr(fileInfo *FileInfo, torrentInfo *TorrentInfo) error {
event := nostr.Event{
Kind: 2003, // NIP-35 torrent announcement kind
Content: fmt.Sprintf("New torrent: %s", fileInfo.Filename),
CreatedAt: time.Now(),
Tags: []nostr.Tag{
{"magnet", torrentInfo.MagnetLink},
{"size", fmt.Sprintf("%d", fileInfo.Size)},
{"name", fileInfo.Filename},
{"webseed", g.getWebSeedURL(fileInfo.Hash)},
},
}
return g.nostrClient.PublishEvent(event)
}
Decentralized Discovery
- Content announced to multiple Nostr relays for redundancy
- Other nodes can discover content via Nostr event subscriptions
- Enables fully decentralized content network
- No central authority or single point of failure
Performance Optimizations
Concurrent Processing
Parallel Piece Loading
func (ws *WebSeedHandler) loadPieces(pieces []PieceRequest) error {
const maxConcurrency = 10
semaphore := make(chan struct{}, maxConcurrency)
var wg sync.WaitGroup
for _, piece := range pieces {
wg.Add(1)
go func(p PieceRequest) {
defer wg.Done()
semaphore <- struct{}{} // Acquire
defer func() { <-semaphore }() // Release
ws.loadSinglePiece(p)
}(piece)
}
wg.Wait()
return nil
}
Connection Pooling
- HTTP client connection reuse
- Database connection pooling
- BitTorrent connection management
- Resource cleanup and lifecycle management
Monitoring & Observability
Comprehensive Statistics
System Statistics
type SystemStats struct {
Files struct {
Total int64 `json:"total"`
BlobFiles int64 `json:"blob_files"`
Torrents int64 `json:"torrents"`
TotalSize int64 `json:"total_size"`
} `json:"files"`
P2P struct {
TrackerPeers int `json:"tracker_peers"`
DHTNodes int `json:"dht_nodes"`
ActiveTorrents int `json:"active_torrents"`
} `json:"p2p"`
Performance struct {
CacheHitRatio float64 `json:"cache_hit_ratio"`
AvgResponseTime int64 `json:"avg_response_time"`
RequestsPerSec float64 `json:"requests_per_sec"`
} `json:"performance"`
}
Diagnostic Endpoints
/api/stats
- Overall system statistics/api/p2p/stats
- Detailed P2P statistics/api/health
- Component health status/api/diagnostics
- Comprehensive system diagnostics/api/webseed/health
- WebSeed-specific health/api/users/me/files/{hash}/transcoding-status
- Video transcoding progress
Conclusion
The BitTorrent Gateway represents a comprehensive solution for decentralized content distribution, combining the best aspects of traditional web hosting with peer-to-peer networks and modern video processing capabilities. Its modular architecture, intelligent routing, automatic transcoding, and production-ready features make it suitable for both small-scale deployments and large-scale content distribution networks.
The system's emphasis on standards compliance, security, performance, and user experience ensures reliable operation while maintaining the decentralized principles of the BitTorrent protocol. Through its unified approach to peer discovery, intelligent caching, automatic video optimization, and comprehensive monitoring, it provides a robust foundation for modern multimedia content distribution needs.